Objective
Porto-systemic shunts (PSS) were reported in the literature to be associated with fetal growth restriction. We present 5 cases in which reversal of oligohydramnios and growth restriction was observed in association with the diagnosis of an acquired intrahepatic left portosystemic shunt. Prenatal sonographic assessment and neonatal outcome are described.

Materials
As an integral part of anatomic scan, all cases referred for growth restriction and oligohydramnios are routinely evaluated for the liver portal system, in intervals of 2-3 weeks. All cases are counselled by a multidisciplinary team. Prenatal follow up and neonatal outcome of this unusual intra-uterine course.

Results
Five cases diagnosed with normalization second trimester oligohydramnios and growth restriction are described. Gestational age at presentation was 30.6 weeks. In all cases the hallmark finding was hypoechoic moth-eaten like lesions within the fetal liver containing blood flow. In all cases, a left porta to left hepatic shunt was observed, and confirmed by pulsatile Doppler flow detected on the left porta branches, consistent with an acquired PSS. On follow up, accelerated fetal growth and normalization of amniotic fluid volume was observed. 4 cases demonstrated a hyperdynamic cardiovascular state, cardiomegaly and increased f-TAPSE. Labor was induced at a mean gestational age of 37 weeks of gestation. First post-natal post prandial blood level ammonia was elevated. On post-natal follow on an average of 2-12 months: 3 cases have a normal post prandial blood level ammonia and two case have an elevated level. Postnatal sonography revealed a persistent shunt in three cases.

Conclusions
Assessment of the portal system is recommended in all cases presenting with IUGR and specifically in cases who “recover” and demonstrate accelerated growth and increased amount of amniotic fluid. These new onset PSS may be secondary to liver ischemia given the closed proximity of the left porta and left hepatic vein, creating a shunt that increases the preload and contributing to the hyper dynamic state.