Do small fetuses shrink prior to delivery?
An analysis of near term SGA.

Katie Stephens, Maya Al-Memar, Suzanne Beattie-Jones, Mandish Dhanjal, Christoph Lees.

Introduction

- Identification of SGA infants antenatally relies on accurate estimated fetal weight based on ultrasonography.
- Growth scans fail to identify over 40% of infants SGA <10th antenatally who were scanned within 2 weeks of delivery.

Aim

Establish the relationship between the difference in estimated fetal weight (EFW) and birthweight (BWt) in relation to the time interval between the ultrasound scan and delivery.

Methods

- Retrospective cohort study (October-December 2017) across two maternity units within one large inner-city London trust.
- Inclusion criteria: Delivered SGA <10th percentile (WHO criteria), growth scan ≤ 2 weeks of delivery, delivery ≥36 weeks gestation.
- Exclusion criteria: Multiple pregnancies, in-utero transfers, known fetal anomalies, late bookers.
- Data collected from hospital computer databases. EFW was calculated using Hadlock’s formula.

Results

- 34/62 (53.1%) cases the EFW > BWt.
- No correlation between the change in weight since growth scan (BWt-EFW) and the duration to delivery (Pearsons correlation coefficient r=0.16, p=0.22).

Conclusion

- EFW > BWt in over 50% of cases despite the fetus remaining in utero for up to a further 2 weeks.
- EFW calculated within 2 weeks of delivery in SGA is a very poor predictor of BW.
- No correlation between change in weight between final USS and delivery, and the number of days between these time points.

Possible explanations include:

1) USS near term is inaccurate due to technical reasons
2) Fetuses may either grow or shrink between scan and delivery.