Introduction
Lower segment caesarean section (LSCS) scars can be seen on ultrasound examinations in patients who had undergone delivery by LSCS. It is located at the site of hysterotomy, on the lower anterior wall of corpus or anterior wall of the uterine isthmus, upper anterior wall of cervix and also at the mid-uterine body.

Methods
120 women underwent gynaecological ultrasound examinations were recruited. The scars were evaluated using the following techniques (Fig.1):
(i) 2D ultrasound on sagittal, transverse planes and oblique planes,
(ii) 3D volume collection with offline evaluation 3D rendering with multiplanar and surface modes and HD Live silhouette enhancement,
(iii) cine clips.

Results
Forty women were in the menstrual phase, 30 women in the proliferative phase and 50 women in the secretory phase of the cycle. Eighty-seven LSCS scars were located on the lower anterior wall, 10 at the lower anterior wall and extending to the internal os, and 11 at the upper anterior wall of cervix. Eighty scars were well-heated, with calcifications seen in 5 patients. Scars defects which presented as fluid-filled areas were detected in 33 women, with the sizes ranging from 3.6 x 2.6 x 2.6 mm to 12.6 x 4.8 x 10.6 mm. These defects have different morphological appearance: triangular, semicircular, irregular, elliptical, tubular (fistula) and round (Inclusion cysts). The 3D rendering provided additional information. In 6 women, the scars presented as a communicating network of channels. There were two cases showing masses occupying the LSCS defects:
(i) one had retained products of conception in the scar defect, post vaginal delivery (Fig.2). The patient received conservative management;
(ii) A polyp was noted within LSCS scar (Fig. 4).

There was a case which demonstrated no obvious myometrial tissue at the site of LSCS, but a large cystic area, which mimics the LSCS defect (Fig. 3)

Conclusion
LSCS scars are commonly seen on gynaecological ultrasound images of women who had undergone LSCS. Our study noted that some masses may be found within the scar defects. The application of HDLive silhouette enhancement improved the sonographic description of these abnormalities.