Validation of fetal DNA fraction estimation and its application in noninvasive prenatal testing for aneuploidy detection in multiple pregnancies (ID:1054)

Min Chen1*, Huanchen Yan1, Nan Li1, Jiayan Wang1, Yu Liu1, Yufan Li1, Dunjin Chen1

1. The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China

To analyze the fetal fraction, fetal sex and chromosomal aneuploidy in multiple pregnancies using noninvasive prenatal testing (NIPT).

Objectives

To analyze the fetal fraction, fetal sex and chromosomal aneuploidy in multiple pregnancies using noninvasive prenatal testing (NIPT).

Methods

A total of 362 pregnant women including 203 singleton pregnancies, 69 twins and 90 higher-order multiple pregnancies were recruited. Fetal fractions estimated by size ratio-based and Y chromosome-based approach in singleton pregnancies with male fetus were used as training data to establish the model. The model was applied to multiple pregnancies for fetal fraction estimation. By comparing the fetal fractions estimated by size-ratio to those by Y chromosome or autosomal chromosomes, fetal sex and chromosomal aneuploidy were further analyzed.

Results

The size ratio-based approach was well established in estimating fetal fractions for twin and higher-order multiple pregnancies. Fetal fraction had a positive correlation with gestational age in twin and triplet pregnancies. Fetal sex was correctly identified in 68 of the 69 twins and 83 of the 85 triplet pregnancies. Fetal chromosomal aneuploidies were detected in seven cases, with two singleton pregnancies and five higher-order multiple pregnancies.

Conclusion

Fetal sex and chromosomal aneuploidy in multiple pregnancies can be determined using NIPT.

Acknowledgments

The study was supported by the National Natural Science Foundation of China (NSFC) (No. 81671470) et.