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Abstract— Understanding and discriminating the spatiotem-
poral patterns of activity generated by in vitro and in vivo
neuronal networks is a fundamental task in neuroscience and
neuroengineering. The state-of-the-art algorithms to describe
the neuronal activity mostly rely on global and local well-
established spike and burst-related parameters. However, they
are not able to capture slight differences in the activity patterns.
In this work, we introduce a deep-learning-based algorithm
to automatically infer the dynamics exhibited by different
neuronal populations. Specifically, we demonstrate that our
algorithm is able to discriminate with high accuracy the
dynamics of five different populations of in vitro human-derived
neural networks with an increasing inhibitory to excitatory
neurons ratio.

I. INTRODUCTION

Despite significant progress in electrophysiology and
imaging techniques in vivo, understanding how information
is transmitted and processed in the human brain is still a
utopia [1]. In this perspective, over the years, simplified
experimental models have been proposed, such as primary
neuronal cultures in vitro. More recently, thanks to the use of
human-induced pluripotent stem cells (h-iPSCs), in vitro neu-
ronal networks reproducibly and reliably approach the activ-
ity and processes of the human brain [2], [3]. By combining
these in vitro systems with Micro-Electrode Arrays (MEAs)
technology, new horizons are opening up in the fields of neu-
roscience and precision medicine [4]. Despite the reduction
in complexity of the system (from in vivo to in vitro) and the
large body of literature available on the analysis of MEA-
based recordings [5]–[7], the electrophysiological patterns of
activity from in vitro networks are still extremely intricate.
For this reason, extrapolating global and local dynamic
parameters [8] to analyze and classify them, is a long process
that can be onerous and challenging. To overcome these
difficulties and limitations, in this study, we introduce a deep-
learning-based algorithm to automatically infer the dynamics
of in-vitro neural networks coupled to MEAs. In recent
years, deep-learning (DL) approaches have gained particular
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popularity for the analysis of physiological signals thanks
to their potential in simplifying complex classification tasks
[9]. DL has been mainly exploited for the evaluation of elec-
trocardiogram (ECG) signals for the classification of heart
diseases by exploiting features extraction from ECG [10] or
by processing the ECG as images [11]. Another widely used
application of DL-based algorithms is the classification of
electroencephalograms (EEG) features to detect sleep phases
[12], epileptic disorders [13] or to diagnose Parkinsons
disease [14]. As regards Local Field Potentials (LFPs), their
analysis with a DL-based algorithm has been exploited to
localize the subthalamic nucleus for the parameters tuning
of deep brain stimulation, in treating Parkinsons disease
[15]. At the spike level, the DL-based techniques are mostly
focused on the localization, classification, and morphological
characterization of single neurons [16], [17]. In our work, we
are making a step forward by exploiting DL to identify the
different patterns of activity emerging in neuronal networks.
Interestingly, our method overcomes the concept of feature
extraction, directly processing the neuronal signals as images
of the spiking activity. As experimental model, we adopted
h-iPSCs-derived networks composed of glutamatergic and
GABAergic neurons obtained from healthy subjects in which
the ratio between excitation and inhibition (E/I ratio) has
been varied. Our hypothesis was that the recorded electro-
physiological activity would have been influenced by the E/I
ratio and, as a consequence, these imbalances would have
been reflected by the exhibited neuronal dynamics [18], [19].
Hence, the main aim of our work is to provide an efficient
method for correctly classifying different activity patterns
and thus distinguishing the nature of the neuronal population
generating them, without performing any detection of bursts
or network bursts. We conclude that thanks to this method,
it is not necessary to carry out in-depth extrapolations of
parameters, leading to rapid dynamics identification.

II. METHODS
A. Data acquisition

H-iPSCs-derived neuronal networks were obtained with
the overexpression of Neurogenin 2 (Ngn-2) and of Achaete-
Scute homolog 1 (Ascl1), induced by the introduction of
doxycycline and forskolin in the culture medium [20]. The
neuronal networks were composed of glutamatergic and
GABAergic neurons mixed in appropriate proportion to ob-
tain 5 different configurations described in II-B. The neurons
were co-plated with rat astrocytes (30%) to ensure proper
sustain and to favor neuronal growth. Cells were plated on



Figure 1. Schematic representation of the proposed pipeline.

MEAs (1200 cells/mm2) pre-coated with human-laminin (20
ţg/ml, BioLamina) and poly-L-ornithine (50 ţg/ml, Sigma-
Aldrich) overnight. The neuronal networks were cultured
in Neurobasal medium (Thermo Fisher Scientific) supple-
mented with B27 (2%, Thermo Fisher Scientific), peni-
cillin/streptomycin (1%, Sigma-Aldrich), stable L-Glutamine
(1% GlutaMAX 100x, GIBCO Invitrogen), human Brain-
Derived Neurotrophic Factor (BDNF, 10 ng/ml, Sigma-
Aldrich), human Neurotrophin-3 (NT-3, 10 ng/ml, Sigma-
Aldrich), doxycycline (4 ţg/ml, Sigma-Aldrich), forskolin (4
ţg/ml, Sigma-Aldrich) and Fetal Bovine Serum (FBS, 2%
Thermo Fisher Scientific). At day in vitro (DIV) 70, we
recorded the electrophysiological basal activity of the neu-
ronal networks for 15 minutes at 10 kHz in stable condition
(37řC/ 5%CO2), by using the MEA2100 recording system
(Multi Channel Systems-MCS, Reutlingen, Germany).

B. Dataset description and pre-processing analysis

We recorded 15 minutes of electrophysiological sponta-
neous activity at DIV 70 of different in-vitro neural networks
with the following inhibitory to excitatory neurons ratio (E/I
ratio): (i) 100E0I; (ii) 75E25I; (iii) 50E50I; (iv) 25E75I; (v)
0E100I. We acquired 7 devices for the classes 75E25I and
25E75I and 6 devices for each of the remaining ones. To
identify the spike activity, we performed the precision time
spike detection algorithm [21] on the acquired recordings.
Eventually, raster plots and cumulative spike trains were
computed. We binned the cumulative spike trains with a 10
ms time window. We computed the total number of spikes
detected in each bin for the entire set of channels (60) and
we built the corresponding histograms.

C. Histograms and raster plots as images

The main idea of our algorithm was to treat the com-
puted raster plots and cumulative spikes time histograms
as synthetic images. In this way, it was possible to exploit
image processing DL-based algorithms for the solution of the
task at hand. However, DL algorithms are notoriously data-
hungry. Thus, we further split the obtained raster plots and
histograms with different time bins to increase the number
of available images. We considered four different candidates’
time bins: (i) 120 s; (ii) 60 s; (iii) 30 s and (iv) 10 s.
Moreover, we considered a stride of 5 s between consec-
utive bins to avoid the risk of losing informative dynamic
events in the pre-processing. See Fig. 2 for an example of
the representative cumulative spike time histograms images

with a time bin of 120 s. Thus, the input dataset for our
deep learning models is d = x, y, where x represents the
images corresponding to either the cumulative spikes time
histograms or the raster plots, and y ∈ [0, 4] representing
the specific class of neural matrices among the available five
described in Sect. II-B.

D. Proposed pipeline

Fig. 1 shows a schematic overview of the designed
pipeline. The first step is the pre-processing of the acquired
data to be used as input for a deep neural network. Spike
detection was performed on the raw data, to build raster plots
and cumulative spike time histograms (see Sect. II-B). The
two dynamic information were further processed to obtain
synthetic images as explained in Sect. II-C. The synthetic
images were then used as input to a deep neural network. We
exploited a transfer-learning framework to compensate for
the low amount of available data. Thus, we adopted a deep
neural network pre-trained on a large-scale natural image
dataset (i.e., ImageNet) as a features extractor [22], adding a
shallow classifier with two fully connected layers, one with
64 neurons and the output one with a number of neurons
equal to the number of dynamic classes (five for the dataset
used in this work, see section II-B).

III. EXPERIMENTS

A. Experiment details

We performed a leave-one-out cross-validation approach in
our experiments, as we have a total of 32 devices available.
Thus, we performed 32 training processes, each time using
one of the available devices as a test, and the remaining 31 to
train our deep neural networks. We further perform a cross-
validation procedure to tune the training hyperparameters.
We trained our neural networks for 25 epochs, with an Adam
optimizer (learning rate equal to 0.0005), a batch size of 75
and an exponential learning rate scheduler.

B. Results

Our first experiment consisted of evaluating the perfor-
mances of our pipeline with respect to the different synthetic
input images (cumulative spike train histograms or raster
plots) and the time bin used for generating them (10, 30,
60, or 120 seconds). We used an EfficientNetB0 ImageNet
pre-trained neural network as a features extractor for this
experiment.



Figure 2. Synthetic images of representative cumulative spike time histograms for each class of culture included in this work. Each image corresponds
to a time bin of 120 seconds.

TABLE I
ACCURACY AND STANDARD DEVIATION CORRESPONDING TO THE

LEAVE-ONE-OUT CROSS-VALIDATION APPROACH PERFORMED WITH

EFFICIENTNETB0 ON THE 32 AVAILABLE DEVICES.

Input image Window Acc s_image Acc device
Histogram 120 0.747± 0.353 0.813
Histogram 60 0.670 ±0.398 0.688
Histogram 30 0.665 ±0.378 0.656
Histogram 10 0.659 ±0.358 0.719
Raster Plot 120 0.580 ±0.400 0.563
Raster Plot 60 0.567 ±0.415 0.625
Raster Plot 30 0.659 ±0.403 0.656
Raster Plot 10 0.652 ±0.398 0.688

Table I shows the obtained results in terms of average test
accuracy among the 32 leave-one-out folds. A time bin of
120 seconds with cumulative spike time histograms leads to
the best test accuracy, equal to 0.747 considering the single
synthetic images prediction (s_image in Table I), and 0.813
on the whole devices (26 devices correctly classified over
a total of 32). Fig. 2a shows the corresponding confusion
matrix. As we can see, the misclassified devices belong
to the 50E50I and the 75E25I classes. Our hypothesis is
that the dynamics of these classes can be fuzzy due to
the unpredictable reshaping of the plated neurons with the
emergence of common temporal patterns. According to this,
we performed another experiment, training an EfficientNetB0
with the best-performing parameters (time bin of 120 seconds
with cumulative spike time histograms), but grouping all the
classes composed by both excitatory and inhibitory neurons
(i.e., 25E75I, 50E50I, 75E25I) in a superclass that we called
heterogeneous configuration. Fig. 2b shows the confusion
matrix obtained on the 32 leave-one-out folds. The algorithm
made only one mistake (with one mixed inhibition classified
as 100E0I), corresponding to an average test accuracy of
0.957 ± 0.175 on the single synthetic images and 0.969 on
the whole devices. We later evaluated the performances of
our algorithm with respect to the neural network architecture
used as a feature extractor, on the original multi-class clas-
sification problem with 5 classes. We compared six different
neural network architectures, with an increasing depth and
number of parameters. For this set of experiments, we fixed
the time bin and the input image to 120 seconds and cumu-
lative spike train histograms, respectively, as they led to the
highest test accuracy for EfficientNetB0. Table II reports the
obtained results, in terms of average test accuracy computed
for the 32 leave-one-out folds. The EfficientNetB0 model

outperformed the benchmark neural networks. Excluding a
drop in accuracy for the smallest network (MobileNetv2),
all the investigated models showed comparable results in
terms of test accuracy, proving the robustness of the proposed
algorithm. Our pipeline is computationally very efficient, as
the ImageNet pre-trained deep neural networks are used as
feature extractors, and only a shallow classifier with two
layers is trained. The average total training time for the best
performing configuration (5024 synthetic images in training)
is ≈ 55 seconds (40 seconds needed to extract features and
15 seconds to train the classifier). The inference rate is ≈ 63
Hz. We performed our experiments on a laptop with a core
i7 2.5 GhZ processor, 16 GB of RAM, and an Nvidia RTX
3060 GPU with 6 GB of RAM.

TABLE II
ACCURACY AND STANDARD DEVIATION CORRESPONDING TO THE

LEAVE-ONE-OUT CROSS-VALIDATION APPROACH AT THE VARYING OF

THE NETWORK ARCHITECTURE ON THE 32 AVAILABLE DEVICES.
RESULTS ARE REPORTED ONLY FOR THE BEST TIME BIN (I.E., 120 S).

Architecture Parameters (M) Acc sw Acc device
EfficientNetB0 5.3 0.747± 0.353 0.813
DenseNet121 8.1 0.671 ±0.377 0.719
DenseNet201 20.2 0.721 ±0.391 0.750

EfficientNetB1 7.9 0.716 ±0.396 0.719
Xception 22.9 0.684 ±0.389 0.750

MobileNetv2 3.5 0.618 ±0.384 0.625

IV. CONCLUSIONS
In this work, we introduced a deep learning-based pipeline

to automatically infer the dynamic of in vitro neural net-
works. The main idea was to exploit cumulative spike
time histograms to obtain synthetic images. These images
were fed to a deep neural network to obtain dynamic class
predictions. We tested our pipeline on a challenging dataset,
represented by five different in vitro neural networks with
increasing percentages of inhibitory neurons (from 0 to 100
% with a step of 25%). We obtained the best performances
using an ImageNet pre-trained EfficientNetB0 and a time
bin of 120 seconds to create our input images. With this
configuration, we were able to correctly classify 26 devices
over a total of 32 with the proposed approach. Finally, our
method is very efficient, requiring less than one minute for
training and being able to predict the dynamic of 63 synthetic
images in one second (i.e., 2.5 seconds on average to infer
the class of a device). Thus, it is compatible with an online
real-time analysis.



(a) (b)

Figure 3. Confusion matrices correspondent to our best performing configuration (EfficientNetB0, Cumulative Spike Time Histogram, and time bin of
120 seconds). (a) Original 5 classes; (b) reduced labels corresponding to the fusion of heterogeneous inhibition classes.
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