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Abstract— We report a novel approach to dementia neuro-
biomarker development from EEG time series using topological
data analysis (TDA) methodology and machine learning (ML)
tools in the ‘AI for social good’ application domain, with
possible following application to home-based point of care
diagnostics and cognitive intervention monitoring. We propose
a new approach to a digital dementia neurobiomarker for early-
onset mild cognitive impairment (MCI) prognosis. We report
the best median accuracies in a range of upper 85% linear
discriminant analysis (LDA), as well above 90% for linear
SVM and deep fully connected neural network classifier models
in leave-one-out-subject cross-validation, which presents very
encouraging results in a binary healthy cognitive aging versus
MCI stages using TDA features applied to brainwave time series
patterns captured from a four-channel EEG wearable.

Clinical relevance— The reported study offers an objective
dementia early onset neurobiomarker prospect to replace tra-
ditional subjective paper and pencil tests with an application
of EEG-wearable-based and topological data analysis machine
learning tools in a possibly successive home-based point-of-care
environment.

I. INTRODUCTION
The growth of dementia patient numbers significantly im-

pacts healthcare expenditures worldwide. Approximately 50
million elderly worldwide suffer from a dementia spectrum
late age-related neurocognitive disorders, as reported by the
World Health Organization (WHO) [1] and the number will
triple soon [2]. Early onset MCI is when an individual expe-
riences cognitive decline more significant than expected for
their age but does not yet meet the criteria for dementia [3].
Common symptoms of early onset MCI include memory
problems, difficulty with language, problems with atten-
tion and concentration, and difficulty with problem-solving
and decision-making [3]. The growing aging societies cri-
sis summons doable deployment of artificial intelligence
(AI) and especially ML tools to enhance rapid diagnostics
for consequential late age cognitive state evaluation and
preservation with “digital pharma” or “beyond a pill” non-
pharmacological-therapeutical (NPT) strategies [4].

We document a study with Japanese elderly participants
using a wearable EEG device. MUSE EEG appliance (In-
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terAxon Inc., Toronto, Canada) demonstrated its potential
feasibility in non-clinical or even for home-based environ-
ments [5], [6], [7], [8], [9], [10], [11]. Dry–electrode EEG
designs are known for amplified noise in captured EEG
compared to clinical-grade instruments. To handle the extra
noise in recorded EEG, we utilize a previously developed
method by the authors [12], [13], which employs data-driven
empirical mode decomposition (EMD) to remove eye-blinks
or muscle movement-related artifacts.

We employ a previously developed task by the au-
thors of emotional identification short-term memory odd-
ball paradigm [9]. The obtained EEG recording regards an
objective evaluation of working/short-term memory during
facial emotion encoding and decoding. We next apply a
topological data analysis (TDA) approach [14] to EEG
time series to demonstrate contrasts between healthy aging
cognition and mild cognitive impairment (MCI) in elderly
participants. The following methods sections explain the
proposed experimental procedure’s motivation and details.
We also involve several shallow and deep machine learning
classification strategies to rank the EEG recordings as healthy
cognitive aging versus MCI. The results interpretation and
prospective application discussion conclude the article.

II. METHODS

We document EEG experimentations with elderly Japanese
participants who partook in our study conducted in the
RIKEN Center for Advanced Intelligence Project (AIP),
Tokyo, Japan. The RIKEN Ethical Committee has approved
the investigation for Experiments with Human Subjects,
permission number Wako3 30-28(4), and complies with The
Declaration of Helsinki. In the current research project, 33
elderly take part (22 females; mean participant age of 73.6±
4.95 years old; 15 MCI and 15 healthy aging cognition).
The elderly Japanese participants were drawn from Silver
Human Resources Center and Honobono Laboratory, Japan.
All participants supplied documented informed consent and
accepted financial compensation.

A. EEG Experiments

Similarly, as in the previously reported study [9], a par-
ticipant sits in front of a computer screen and observes
different emotional facial videos drawn from a Mind Read-
ing library [15]. As in the classical oddball paradigm, the
participant’s task is to memorize a single short facial video
portraying an emotional expression, and next, a random



series of eight emotional displays by the same actor follows.
The healthy cognitive aging participants are expected to
mentally recall previously memorized emotional expressions,
while those with MCI might have problems with recalls and
inhibition of the distracting non-target stimuli. Our project
hypothesis is that brainwave dynamics differences captured
in EEG can be elucidated with TDA and machine learning
tools. In the pre-pandemic study in 2019 [6], [7], [8], we
evaluated the Japanese elderly participants with Montreal
Cognitive Assessment (MoCA) test [16] and MoCA score
25 and below (MoCA ≤ 25), indicated an MCI onset.

B. EEG Recording, Preprocessing and Feature Extraction

The MUSE 2016 wearable EEG headband (InteraXon
Inc., Canada) employed in our study permits suitable elec-
trical brain activity monitoring from preset dry electrodes
AF7, AF8, TP9, and TP10, with a ground and reference
electrodes on a forehead [5]. We operate an in-house EEG
recording environment running a muse-lsl [5] library in
Python, which communicates with MAX backend (by Cy-
cling ’74, USA) patches for synchronized video facial stimuli
exhibition. A 50 Hz notch filter is also applied to remove
power line interference (a local power grid frequency in
Tokyo) and a subsequent bandpass–filter within 1 ∼ 40Hz
unrelated baseline drifts and high-frequency noises. In or-
der to dismiss muscle and eye movement-related artifacts
usually contaminating EEGs, we utilize a formerly invented
empirical mode decomposition (EMD) methodology [12],
[13]. In the EMD application to EEG, all the channels are
first decomposed into intrinsic mode functions (IMF). Next,
we reject all the IMFs that exceed the 100 µV threshold
before the final signal reconstruction from clean/subthreshold
IMFs. We implement the above EMD-based EEG denoising
procedures in PyEMD ver.1.4.0 [17]. Topology in mathe-
matics studies shapes and spaces that are hard to convey
visually [18]. Topology application in data analysis [19]
allows for describing and classifying noisy and highly-
dimensional datasets by extracting topological invariants
distinguishing the complex datasets [20]. Among the many
topological methods developed for data analysis [20], [18],
[19], a persistent homology is the most often used [14].
Persistent homology permits the construction of descriptors
of the shape of a point cloud, and it permits cataloging the
existence of different structural features, such as connected
components, cycles, and voids. In the current project, we
utilize the persistent homology, a number of cycles, and nor-
malized persistence entropy features, as developed in [14],
to describe the noisy point of clouds generated from four-
channel EEG traces recorded operating a MUSE wearable
during facial emotion oddball task performed by elderly
participants in the presented study.

C. Supervised Clustering and Classification

In the documented study, we first visualize the TDA fea-
tures with a uniform manifold approximation and projection
(UMAP) [21], a powerful supervised dimensionality reduc-
tion technique employing a topological manifold analysis.

In a final classification approach employing a leave-one-out-
subject cross-validation (LOOSCV) technique allowing for
keeping in each cross-validation step all data of a single
subject and training a model using all the remaining subjects;
thus, the procedure could be repeated for all the available
subjects, and final accuracies are concatenated and eluci-
dation with median and confidence intervals as discussed
in the results section. In the following shallow and deep
machine learning models, as available in the scikit-learn
ver. 1.2.0 [22] library, we employ in the current study logistic
regression (LR) with a liblinear solver; linear discriminant
analysis (LDA) using least-squares solver; linear kernel
support vector machine (linearSVM) with squared hinge
loss, and l2−penalty; random forest classifier (RFC) with
a maximum number of trees in the forest set to 400; deep
fully connected neural network (DFNN) with six layers of
4, 64, 128, 256, 32, 8 rectified linear units (ReLU) units; two
softmax output units; early stopping; adaptive learning rate;
and an ADAM optimizer.

III. RESULTS

The results of TDA application to multichannel EEG
time series we summarized for the persistent homology in
Figure 1, the number of cycles in Figure 2, and normalized
persistence entropy in Figure 3. All chosen TDA features
resulted in statistically significantly differing distributions
(pr ≪ 0.05) , as evaluated with a Wilcoxon rank sums test
for healthy cognitive aging versus MCI participants. The
above TDA application results allowed for a subsequent
supervised clustering with UMAP, as depicted in Figure 4,
with clearly separable clusters of healthy cognitive aging
versus MCI, with only small overlaps. Finally, the LOOSCV
application of the current subject group of 33, allowed us to
simulate the real-world point-of-care scenario, in which an
unknown condition subject’s EEG tested against a machine
learning model trained on a limited number of known-label-
patients resulted in very encouraging results we summarized
in Figure 5. We achieved the highest LOOSCV median
results, above 90%, with the linearSVM and DFNN machine
learning models.

IV. CONCLUSIONS

We reported a project in which the TDA feature drawn
from multichannel EEG wearable recordings in simple short-
term memory cognitive tasks allowed for discrimination
with a statistical significance of healthy cognitive aging
versus MCI elderly participants, as summarized in Fig-
ures 1, 2, and 3. A subsequent application of supervised
UMAP clustering (see Figure 4) and several shallow, as
well as deep learning models (as summarized in Figure 5)
further confirmed a possibility for near future point-of-care
and home-based diagnostics based on a classification dis-
criminating healthy cognitive aging versus MCI with median
accuracies above 90% for the best linearSVM and DFNN
models.

We recognize the inherent limitation of the current ap-
proach as we only replicate, at this stage, the human-error-



Fig. 1. Persistent homology features [14] of the analyzed EEG with
TDA approach from healthy cognitive aging versus MCI participants. Each
experimental subject contributed 53 EEG responses on average.

Fig. 2. The number of cycle features [14] of the analyzed EEG with
TDA approach from healthy cognitive aging versus MCI participants. Each
experimental subject contributed 53 EEG responses on average.

prone subjective paper and pencil test cognitive evaluation
criteria converted to binary MCI (MoCA ≤ 25), versus
healthy cognitive aging (MoCA > 25), which are only
subjective estimators of an early onset dementia detection.
Furthermore, the present study comprised a limited sample
of the elderly, an added restraint of the machine model
results. Our next research goal shall be an extension of the
current objective neurobiomarker approach, perhaps beyond
EEG, including fNIRS and eye-tracking modalities, to fur-
ther validate the potential of creating true-to-life point-of-

Fig. 3. Normalized persistence entropy features [14] of the analyzed EEG
with TDA approach from healthy cognitive aging versus MCI participants.
Each experimental subject contributed 53 EEG responses on average.

Fig. 4. UMAP supervised clustering results present a possibility to separate
healthy cognitive aging versus MCI participant EEG features drawn from
the topological data analysis approach.

care standards without the necessity to refer to paper-and-
pencil questionings in near future application to home-based
dementia early onset monitoring.
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